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ABSTRACT

The study presents a modified mathematical expression
for the wave-spectrum function in the Fourier representa-
tion of the wave pattern of a ship advancing at constant
speed in calm water. This new expression 1is obtained from
the well-known usual expression via several applications
of Stokes' theorem for combining the integrals along the
top waterline and over the hull surface of the ship. The
modified expression for the wave-spectrum function is
considerably better suited than the usual expression for
accurate numerical evaluation, notably for evaluating
the short divergent waves of interest for remote sensing
of ship wakes, because the significant numerical cancella-
tions occurring between the waterline and hull integrals
in the usual expression are automatically and exactly
accounted for in the modified mathematical expression, as
is demonstrated mathematically and confirmed numerically.
Whereas the values of both the velocity potential and its
gradient at the hull are required in the usual expression
for the wave-spectrum function, the new expression only
involves the tangential velocity at the hull, not the
potential. This new expression thus defines the wave-
spectrum function In terms of the speed and the size of
the ship, the hull form, and the tangential velocity at
the mean hull surface.

ADMINISTRATIVE INFORMATION
This study was performed at the David Taylor Research Center and was funded
under the Applied Hydrodynamics Research Program, Program Element 61153N, Task Area

BRO230151 and Work Unit 1542-109.




INTRODUCTION

Near—-field potential-flow calculations about ships advancing at constant speeds
in calm water are routinely required for evaluating their hydrodynamic characteris-
tics, in calm water and in waves, and for determining the required propulsion and
control devices. Calculations of far-field ship wave patterns are also important in
connection with wave-resistance predictions and remote sensing of ship wakes. 1In
particular, the latter practical application requires the ability of determining the
short divergent waves in the wave spectrum having waveleagths between 5 cm and 40 cm
associated with Bragg scattering of the electromagnetic waves in typlcal SAR systems
used in remote sensing of ship wakes. No meaningful predictions of such short waves
can be obtained on the basis of currently available numerical methods. More
generally, numerical predictions of the steady wave pattern at large and moderate
distances behind a ship are notoriously difficult and unreliable, as was recently
made clear at the Workshop on Kelvin Wake Computations [l]. Ship wave-resistance
calculations are also known to be difficult and unreliable.

Alternative numerical methods have been developed for evaluating near-field flow
about a ship, that is, flow at the hull surface and in its vicinity. These include
finite-difference methods, e.g. Coleman [2] and Miyata and Nishimura [3], and the
more widely used boundary integral equation methods, also known as panel methods.
The latter methods can be divided into two main groups, according to the Green
function that 1{s used. These two groups of methods are the Rankine-source method
and the Neumann-Kelvin method, which are based on the simple Rankine (free-space)
fundamental solution and the more complex Green function satisfying the linearized
free-surface boundary condition, respectively.

The Rankine-source method was initiated by Gadd [4], Dawson [5] and Daube [6],

and has since been adopted by many authors. The NeumannXelvin approach has a long
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history. A survey of recent numerical predictions obtained by a number of authors
on the basis of the Neumann<elvin method may be found in Baar [7]. This study and
that by Andrew, Baar and Price [8] also contain extensive comparisons of the authors'
own Neumann-<Kelvin numerical predictions with experimental data. An approximate
solution, defined explicitly in terms of the value of the Froude number and the hull
shape, to the Neumann-<Kelvin problem was proposed in Noblesse [9]. This slender-
ship approximation was recently used by Scragg et al. [10] and compared to both
Neumann-Kelvin predictions and experimental data in [7] and [8] and to experimental
data 1in [1] and [11].

The aforementioned alternative numerical methods for predicting flow in the
vicinity of a ship are not all directly suitable for predicting the wave pattern of
a ship at large, or even moderate, distances. More precisely, the finite-difference
method and the Rankine~source panel method require truncating the flow domain at
some relatively-small distance away from the ship and therefore can only be used for
near-f’ 21d flow calculations. (However, these near-field flow predictions can be
used as input to the far-field Neumann—<Xelvin flow representation considered in this
study.) On the other hand, the Neumann<Xelvin theoretical framework is equally
suitable for near—-field and far-field flow predictions. Tndeed, the far-field
Neumann—<Xelvin flow representation 1s a simplified particular case of the
corresponding near-field representation.

The problem considered in this study is that of evaluating the steady wave
spectrun and the wave pattern of a ship at moderate and large distances behind it
in terms of the near-field flow on the hull surface. The near—field flow thus 1is
assumed known for the purpose of the present study, which is concerned with the
prediction of the steady wave spectrum and the wave potential behind a ship stern

within the Neumann—<Xelvin theoretical framework as was just noted.
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This theory expresses the wave potential in terms of a Fourier representation,
as 1s well known and is specifically indicated by Eq. (20) in this study. The wave-
spectrun (or wave-amplitude) function in this Fourier representation is defined by
the sum of an integral along the mean waterline and an integral over the mean
wetted~hull surface. This expression for tlie wave-spectrum function, given by Egs.
(21)-(23), is quite ill suited for accurate numerical evaluatinn because the
waterline integral and the hull integral in Eqs. (22) and (23) largely cancel out,
as 1s shown further on in this study and is illustrated in Fig. 2. Errors in the
numerical evaluation of the waterline and hull integrals cause imperfect numerical
cancellations between these integrals and corresponding large errors in their sum,
This fundamental difficulty was recognized in [9] and in Barnell and Noblesse [12],
where attempts to remedy it were presented. However, these ad hoc approximate
numerical remedies, based upon combining the waterline integral with the
contribution to the hull integral stemming from the upper part of the hull surface
are not satisfactory, as is attested by the fact that a very large number of panels
1s required for obtaining reasonably accurate numerical results [12].

A conceptually simpler and numerically more effective remedy 1s presented in
this study, in which a modified mathematical expression for the wave-spectrun
function is obtained via several applications of Stokes' theorem for combining the
waterline integral and the hull integral. This new expression for the wave-spectrum
function 1s considerably better suited than the usual expression for accurate
numerical evaluation, notably for evaluating the short divergent waves of interest
for remote sensing of ship wakes, because the significant numerical cancellations
occurring between the waterline and hull integrals in the usual expression (see
Fige 2) are automatically and exactly accounted for, via a mathematical

transformation, in the modified expression obtained in this study. The fundamental
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advantage of the new expression over the usual one is apparent from Figs. 8a-e.
Another interesting feature of the modified expression for the wave-spectrum
function is that it only requires the tangential velocity at the hull, not the
potential, whereas the usual expression requires the values of both the velocity
potential and its gradient at the hull. The modified expression thus defines the
wave-spectrum function in terms of the speed and the size of the ship, the hull
form, and the tangential velocity at the mean hull surface. This expression is
suitable for use in conjunction with a boundary-integral-equation method based on a
source distribution or any other numerical method in which the velocity vector (but
not the potential) is determined on the mean hull surface. It provides a coupling
between a far-field Neumann<elvin flow representation and a near-field flow
calculation method based on the use of Rankine sources or finite differences, in

particular,
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NEUMANN-KELVIN REPRESENTATION FOR THE STEADY WAVE POTENTIAL OF A SHIP

As was already noted, this study considers steady potential flow about a ship
advancing at constant speed in calm water of infinite depth and lateral extent.
Nondimensional coordinates and flow variables are defined in terms of the length L
and the speed U of the ship and the water density p. The undisturbed sea surface is
chosen as the plane z = 0, with the z-axis pointing upwards, and the x-axis 1is taken
in the ship centerplane (port- and starboard-symmetry is assumed) and pointing
towards the bow, as is depicted in Fig. l. The Froude number and its inverse are
denoted by F and v, respectively, and are given by

F=u/(a)t?

=1/v , (1)
where g is the acceleration of gravity,

Within the so-called Neumann-<Xelvin theoretical framework, the velocity poten-
tial ¢(E), at any point E = (£, n, ¢ £ 0) strictly outside the ship hull surface, is
defined by the following integral representation [9]:

6 @) = v@) +xEse) , ()

v = FZIW‘E nxzty o + fh'E n da, (3)

X = F? [, [BCt 8 +s ¢ )~$3C/ax] £, d

- [, $3C/an da+p2ff6n(¢) dxdy , (4)
where

n() = [3¢/3x-(\7¢)2/2]3(3¢/az+F232¢/8x2)/az

- 3(79)° /ax + g+ (¥4)7/2 + 0(F%p°) . (5)

In Eqs. (3) and (4), the symbols w, h and f represent the positive halves of the
mean waterline, of the mean hull surface and of the mean free surface, respectively,
as 1s depicted in Fig. 1 (where h = s + b with s = hull side and b = hull bottom).
Furthermore, df is the differential element of arc length of w and da the differen-

-’
tial element of area of h. Algo, n = (nx, ny, nz) is the unit vector normal to h
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<>
and pointing outside the ship, t = (tx, ty’ tz = 0) is the unit vector tangent to w

EY

and pointing towards the bow and s = (Sx’ sy, sz) is a unit vector tangent to h and

pointing downwards, as is shown in Fig. 1. 1In Eq. (4), ¢ _ and ¢, represent the

t

*
components of the velocity vector V¢ in the directions of the tangent vectors t and
>
s to h, respectively.

The nonlinear term (¢ ) defined by Eq. (5) and the corresponding free-surface
integral in Eq. (4) are associated with the nonlinearities in the free-surface
boundary condition. This nonlinear term is usually neglected in practice.

- -3 3

The term G = G(g;x) in Eqs. (3) and (4) is the Green function for port- and
starboard-symmetry defined as

_ I > >

G = G(g;x) = G(E;X:Y)Z) + G(E;X’_Y’z) H (6)

> >
where G(f;x) is the Green function associated with the linearized free-surface

boundary condition 3G/ag + F232G/3£2 0. The function G(E;;) represents the
>

linearized flow created at the point £ = (§, n, £ < 0) by a unit outflow at the
point X = (x, y, z £ 0), stemming from a submerged source if z < 0 or from a flux
across the mean free surface i1if z = 0 as is shown in Noblesse [13]. In the fore-
going equations and hereafter, E represents the "calculation point”, where the
potential is evaluated, while % represents the "integration point”™ in the integrals
on w, h and £,

The Green function may be expressed as the sum of three terms, as follows
[13,9]:

+ > + 2 2 >
4nG(E;x) = S(E3x) + 2v"N(X) + 4V H(x-E)W(X) , (7
*

where v is the inverse of the Froude number given by Eq. (1), and X is defined as

b 2 2 2

X=(X, Y, 2<0)=[vi(E-x), vin-y), viig+2)] , (8)
and represents the vector of coordinates, rendered nondimensional with respect to

the characteristic wavelength Uz/g instead of the ship length L, joining the free-
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surface mirror image (x, y, -z) of the singular point (x, y, z) to the calculation
point (£, n, Z).

The term S(E;;) in Eq. (7) corresponds to a superposition of a Rankine source at
the singular point (x, v, z) and a Rankine sink at its free-surface mirror image
(x, v, -z), as follows:

SE3%) = -[(E-x)2+(n-y P +(g-2)2] / 2+[(6-x)2+(n-y)2+(c+z)2]-1/ ‘. (9)
The second term N(i) in Eq. (7) represents a nonoscillatory near-field (local) flow
disturbance. Finally, the term W(§) represents the system of Kelvin waves trailing
behind the singular point (x, y, z), as is indicated explicitly by the Heaviside

unit-step function H(x-E).

By using expression (7) for the Green function in Eqs. (6) and (3)-(4) we may

express the potential ¢(E) defined by Eq. (2) as the sum of three potentials, as
follows:

b @) = 9 B) + 0 () + 0, ), (10)
which are readily defined by Eqs. (2)-(4) and (6) in which the Green function G is
simply replaced by S/(4n), va/(Zn) and vZH(x-g)W/n, respectively.,

Numerical evaluation of the potential ¢S associated with the singular algebraic
term S given by Eq.(9) is a fairly simple task (especially for points E strictly
outside the ship since the term S then is never singular) for which extensive expe-
rience 1s available in both aerodynamics and hydrodynamics. In particular, only the
hull-surface integrals in Eqs. (3) and (4) need be considered for the potential ¢g
since Eq. (9) shows that we have S = 0 on w and f, where z = 0,

Numerical evaluation of the nonoscillatory near-field potential ¢N in Eq. (10)

associated with the nonoscillatory near-field term N in Eq. (7) is also a relatively

> >
simple task because the terms N(X) and YN(X) are sufficiently well-behaved functions

that can be evaluated numerically with satisfactory accuracy and efficiency. 1In
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particular, the function N(?) remains finite at the origin ; = 0 whereas the func-
tion VN(;) has a relatively weak singularity, which is given in Noblesse [14].
Furthermore, this singularity does not occur for points E strictly outside the ship.
The integrals on w, h, and f in Eqs. (3) and (4), where G is replaced by N, can then
be evaluated numerically by using ordinary integration rules since the integrands in
these integrals are continuous everywhere and nonoscillatory (except for the poten-—
tial ¢ and the free~surface nonlinear term w, which are wavy functions with a char-
acteristic wavelength explicitly defined in terms of the value of the Froude
number). Accurate and efficient methods for numerically evaluating the terms N and
VN have recently been developed by Newman [15] and by Telste and Noblesse [16].
Numerical evaluation of the wave potential ¢w in Eq. (10) assoclated with the
wave term W in Eq. (7) is considered in this study. The wave potential ¢w dominates
the nonoscillatory near—field potential ¢S + ¢N at some distance behind the ship, as
is well known, and ¢w is the most important component for practical applications to

wave-resistance predictions and remote-sensing of ship wakes. The behavior of the

oscillatory term W, which represents the system of Kelvin waves trailing behind the

singular point ; as was already noted, is considerably more complex than that of the
nonoscillatory near-field term N, 1In particular, the functions w(%) and vw(;) have
strong and complex singularities at the origin ; = 0 and are 111 behaved in the
vicinity of the line Y = 0 = Z and X < 0, as is shown in Ursell [17] and Euvrard
[18]. Accurate numerical evaluation of the functions W and VW is difficult in the
vicinity of the origin and more generally at the plane 7Z = 0. 1In spite of these
difficulties, a method for numerically evaluating the wave terms W and VW has
receni ly been developed by Baar and Price [19], Ursell [20] and Newman [21]. In

principle, this method could be used for evaluating the wave potential ¢w in a

manner analogous to that briefly explained in the foregoing for evaluating the

_10-




nonoscillatory near-field potential ¢N. However, it is not clear a priori that the
previously—-noted complex behavior of the functions W and VW along the line Y = 0 = 2
and X < 0 would not cause serious numerical difficulties for evaluating the wave
potential at the mean free-surface plane z = 0,

An alternative, indirect or Fourier-type, method for evaluating ¢w is used in
[12] and this study. The method is based upon the following Fourier integral

-'
representation [13] of the wave term W(X):

h ® 2 2,1/2
WX) = [ Im exp[Z(1+t™)+1(X+Ye)(1+t°)""7] dt , (11)
=00
where Im denotes the imaginary part. By using Eq. (8) in Eq. (l1) we may obtain
> ® * + >
W(X) = [ ImE¥(t;g) E(t;x) dt , (12)
-0
> >
where the functions E*(t;£) and E(t;x) are defined as
’
2
E*(t;8) = exp[P (g + 1(uf + wm)}] , (13a)
*
E(t;x) = exp[Pz{z - 1(ux + vy)}] , (13b)
In Eqs. (13a,b) we have
P =vp with p= (1+t2)/2 (14a,b)
u=1/p and v = t/p ; (15a,b)

we then have

1>u>0 and 0<v<l for 0<t<w>, (16a,b)
with u? + v =1, (17)
Equations (12) and (13a,b) yield

_* > > »>

W(E;x) = W(Esx,y,2) + W(E;x,~y,2z) =

® 22 2 2
2 fO Im exp(v7gp”) cos(vnpt) exp(ivEp)
exp(Pzz) [E+(t;x,y) + E_(t;x,y)] dt , (18)

where the functions E_(t;x,y) are defined as

E, (t;x,y) = exp[-iPz(ux t vy)] . (19)

The wave potential ¢w(E) 1s defined by Eqs. (2)-(4) where the Green function G

-11-




is replaced by the wave term vzH(x-g)WYN, as was already noted. 1In this study, we
limit our attention to the wave pattern behind the ship stern; we then have X 2 &
and H(x-¢) = 1 for points (x, y, z) on the hull surface h + w. The indirect,
Fourier-type method used in this study for evaluating the wave potential consists in
interchanging the order of integration between the integration point X in the
integrals in Eqs. (3) and (4) and the Fourier variable t in the integral (18). The
wave potential ¢w is then expressed in the form

¢W(E) = (2/n) fg exp(vchz) cos(vznpt) Im eXp(inEp) [K+(t) +K_(t)] dt . (20)

In this Fourier representation, the functions K+(t) are given by the sum of the
terms § and X defined by Eqs. (3) and (4), where the Green function G is replaced by
the terms vl exp(Pzz) E, (t;x,y).

The functions K+(t) may then be expressed in the form

K, (t) = 0*(:) +K¢+(t) (21)
—(t) - f E, nxzty a + v I exp(e’2)E, n da, (22)
+(t) = f (tx¢t+sx¢s+iv2p¢)ty de

2p2

E_
f exP(pzz)Et on, da + Ifg E, m(¢) dxdy , (23)
where Eq. (19) was used, the term n, is defined as

n, = -n + i(unX + vny) , (24)
and fg represents the portion of the mean free-surface plane upstream from the plane
X = £,

The wave potential ¢W(E) in Eq. (20) thus is defined in terms of a familiar
Fourier superposition of elementary plane waves propagating at angles 8 from the
x—-axis given by

tan 6 = fv/u = tt . (25)
The amplitudes of these elementary plane-wave components are essentially given by

the functions K+(t), which may thus be referred to as the far-field wave-amplitude
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functions or as the free-wave spectrum functions. These functions contain essential
information directly relevant to a ship's wave resistance and signature. 1In
particular, the wave resistance, R say, experienced by the ship is defined in terms
of the wave-spectrum functions Kt(t) by means of the well-known Havelock formula

R/ (pU?L?) = f; [k, (£) +Kk_()]%p de . (26)

The important information contained in the functions Kt(t) indeed represents a
significant advantage of the indirect Fourier—-type method over the direct integra-
tion method mentioned previously. Furthermore, the integral (20) defining the wave
potential ¢W(E) is more amenable to numerical evaluation than the integral (11)
defining the wave term W(&) because the wave-spectrum function K+(t) +K_(t)
vanishes as t + =,

Numerical evaluation of the wave integral (20) and of the functions Kot(t) and
K¢i(t) defined by Eqs. (22) and (23) are the two main numerical tasks which must be
considered in the indirect Fourier-type approach. The second of these tasks is
examined here. Numerical evaluation of the waterline, hull and free-surface
integrals in Eqs. (22) and (23) is a seemingly relatively-simple task, given the
value of the potential ¢ on the mean hull surface h and waterline w and the value of
the free-surface nonlinear term (¢ ); in particular, the integrands of the integrals
in Eqs. (22) and (23) are continuous functions.

Nevertheless, accurate and efficient numerical evaluation of the functions
Koi(t) and K¢i(t) requires careful analysis because the trigonometric functions
Et(x,y;t) defined by Eq. (19) oscillate very rapidly for large values of p? = v2p2,
as is the case for typical values of the Froude number F = 1/v and of the Fourier

2

variable p2 = 1+t2 = gec 6, and because the potential ¢ in the integrands of the

waterline and hull integrals in Eq. (23) is multiplied by the large numbers vzp and

v2P2 = (vzp)z, respectively., The terms involving the potential ¢ 1in Fq. (23) there-
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fore are dominant and quite large for typlcal values of vzp. More precisely, let

Eq. (23) be expresed in the form

‘=K, + 1o(1<w’ - 10K, ") , 27

. 2
=X _+
K, =K oK~ + o"Ky W "

(] W

where the free-surface integral and the superscript * have been ignored for

simplicity and the functions K K..” and KH' are defined as

W’ v
K, = fw E, (tx<pt+sxqss)ty a , (28a)
Kw' = fw E, ¢ty e , (28b)
KH' = Ih exp(Pzz)Et ¢n, da , (28c)

with ¢ defined by
c = vzp = (1+t2)1/2/ F = secd /[ 7 . (29)
The real and imaginary parts of the sum of the port and starboard contributions to

the functions K ioK "~ and czKH' are depicted in Fig. 2 for 0 < t = tang 10

¢’Kw’ W -
(corresponding to 0 < 6 < 84°) for a very simple case corresponding to a simple
mathematicaiiy~defined hull form with an assumed simple mathematical expression for
the velocity potential ¢ at the hull. More precisely, the mathematical hull consid-
ered in Fig. 2 has constant draft and rectangular framelines, with draft/length aad
beam/length ratios equal to 0.07 and 0.16, respectively. The hull consists of a
pointed bow region 0.2 < x < 0.5 with parabolic waterlines, a straight middle-body
region -0.3 > x < 0.2 and a rounded stern region -0.5 { x € ~-0.3 with elliptic water-
lines. The potential in Eqs. (28a,b,c) is taken as ¢ = F exp(vzz) cos[vz(x—l/2)~3w/8],
which corresponds to an elementary plane wave. The foregoing simple hull form and
assumed simple expression for the potential at the hull are used for the calcula-
tions presented in Fig. 2, and for all the calculations presented further on,

because this simple case 1is adequate for the present purpose of numerically illus-
trating the essential properties of the alternative mathematical expressinns for the

wave-gpectrum function examined in this study and it permits accurate calculations
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(the required integrations can be partially performed analytically). The results
presented in Fig. 2 correspond to a value of the Froude number equal to 0.15.

Figure 2 shows that the function K¢ is considerably smaller than its components

»

W and

Ky icKw' and oZKH'. In particular, the waterline and hull integrals ioK

OZK .

u do not appear to vanish in the limit § + 90° and the waterline integral K

W
vanishes appreciably more slowly than the function K¢. Significant cancellations
therefore occur between the functions iowa and oZKH' and between the sum of these
two functions and the function Kw. These significant cancellations occur for all
values of 6 but are especially notable for large values of 6, which correspond to
the short divergent waves in the spectrum. The errors which inevitably occur in the

numerical evaluation of the components K ioK “ and GZKH' cause imperfect numerical

W'’ W

cancellations between these components and corresponding large errors in their sum.
Numerical errors in the sum K¢ can be especially difficult to control because the
errors associated with the numerical evaluation of the hull integral cZKH' and the
waterline integral Kw + ioKw' are not necessarily comparable (due to differences in
the errors associated with numerical integration over hull panels and waterline
segments). The usual expression (23) for the Neumann—Kelvin correction K¢ in

Eq. (21) thus is quite 1ll suited for accurate numerical evaluation. A modified
mathematical expression in which the cancellations between the waterline and hull

integrals depicted in Fig. 2 are automatically and exactly accounted for is

presented further on in this study.
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MODIFIED EXPRESSIONS FOR THE FAR-FIELD WAVE-SPECTRUM FUNCTION

Modified expressions for the functions Kot(t) and K¢t(t) can be obtained by
using Stokes' theorem

IC V-t de = f (VxV) . n da , (30)
where V represents a vector field, and t and ; are unit vectors tangent to a closed
curve C and normal to an open surface S bounded by C, respectively. In particular,
we will use two special forms of Stokes' theorem corresponding to the vector fields
+> +> > +> +> >
V=f ey and V = f e s where ey and e represent unit vectors along the y- and x-axes
and f stands for a scalar function, namely,

¢ t, fde = [, (n 3£/3x - n 3f/3z) da, (31a)

Jot, fd =], (n aff3y - n, 3f/ax) da . (31b)
The functions Kot(t), which correspond to the so-called zeroth~order slender-ship

approximation to the Neumann-Kelvin theory [9], are consldered first, and a

numerically-convenient modified form of Eq. (22) is obtained.
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The zeroth—order slender-ship approximation

It is convenient to divide the mean hull surface h into two parts, namely the
hull side, s say, and the hull bottom, b, as is depicted in Fig., 1. Equation (22)
then becomes

b4 2
K0 (t) = jw Et nx

ty de + vzfs exp(Pzz)Ei n da

+ vsz exp(Pzz)Ei n da . (32)
The hull bottom of a typical ship is a nearly horizontal surface, so that we have
nx = 0 on b, but n is usually significant on the hull side in the bow and stern
regions. However, the hull side of a typical ship is a nearly vertical surface,
i.e. we have n, = 0 on s. It is therefore convenient to express the integral on the
hull side in Eq. (32) as an integral involving the source density n, by using
Stokes' theorem in the form of Eq. (3la).

More precisely, Eq. (3la), in which the open surface S and the function f are

taken as the hull side s and the functions quzexp(Pzz)E+, yields

fs exp(Pzz)Et a_ da = ~1iu fs exp(Pzz)Et o, da
- quz fw Et ty a + qu2 fw' exp(Pzz)Ei ty dz , (33)
where Egqs.(l), (l4a) and (15a) were used, and w' 1is the waterline-like curve
separating the hull side and the hull bottom, as is shown in Fig. 1. The unit tan-

gent vector t = (tx, ty, tz) to w' is pointing towards the bow., In Eq. (33), the

identity ty 0 along the stem and stern lines, which lie in the ship centerplane
y = 0, was used.
By substituting Eq. (33) into Eq. (32) we may obtain
bS 2 2 2 2
= - +
KO (t) fw Et (nx u )ty & +u Jw' exp(P Z)Et ty 4z
2 2 2 2
- ivTu js exp(P Z)Et n da + v fb exp(P Z)Et 0 da . (34)

Comparison of Eqs. (32) and (34) shows that, on the hull side, the source density n

in Eq. (32) has been replaced by the density —1un2 in Eq. (34). The latter density
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is null for a wall-sided ship and, more generally, vanishes in the limit t + «, as
may be seen from Eqs. (15a) and (l4b). The hull-side integral therefore is gener-
ally less important in the modified expression (34) than in the original expression
(32). 1In particular, the hull-side and hull-bottom integrals in Eq. (34) are null
for a wall-sided ship with a flat horizontal bottom, for which Eq. (34) expresses
the functions Kot(t) as the sum of two line integrals.

The trigonometric functions Ei defined by Eq. (19) are rapidly oscillatory, as
was already noted. The dominant contribution to the waterline integral in Eq. (34)
therefore stems from the point(s), 1f any, where the phases Pz(ux + vy) of the func-
tions Et are stationary. These points of stationary phase are defined by the
conditions udx * vdy = 0, which yield the relations

utx + vty =0, tx = v, ty = Fu ; (35a,b,c)
the latter two relations can be obtained from Eq. (35a) by using Eq. (17) and the
i1dentity tx2+ty2 = 1,

The term u® in the integrand of the modified waterline integral in Eq. (34)
stems from the hull-side integral in Eq. (32). We have n = —ty along the top water-
line for a wall-sided ship. It may then be seen from Eq. (35¢) that the term nxz-u2
in the integrand of the waterline integral in Eq. (34) vanishes at a point of
stationary phase for a wall-sided ship. This result indicates that the waterline
integral and the hull-side integral {n the original expression (32) cancel one
another in a first approximation (more precisely, within the stationary-phase
approximation) for a wall-sided ship. The major contributions stemming from these
two Integrals thus are combined into the modified waterline integral in the alterna-
tive expression (34); and the modified hull-side integral in Eq. (34) is less impor-

tant than the original hull-side integral in Eq. (32), as was already noted.

For the simple mathematical hull form defined previously we have n,= 0 on the
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hull bottom b and n = 0 on the hull side s and Egs. (32) and (34) then yield
KO = Kw + KS . (36a)
KO = Kw* + Kw’ , (36b)
where Kw and KS represent the waterline and hull-side integrals, respectively, in
the usual expression (32) and Kw* and Kw’ correspond to the integrals along the top
and bottom waterlines w and w', respectively, in the modified expression (34). The
real and imaginary parts of the sum of the port and starboard contributions to the

functions Kw s K Kw* and Kw’ are depicted in Figs. 3a-e for 0 < tang < 5 (i.e. for

s
0 <6 <79°) and for the simple hull form considered previously and five values of
the Froude number, namely F = 0.1, 0,15, 0.2, 0.25 and 0.3. For F = 0.1 and 0.15,
Figs. 3a,b show that the bottom—waterline integral Kw’ is quite small for all values
of 8 and the function K, is well approximated by the modified top-waterline integral

0

Kw*, that is we have Kw’ << Kw* = K These figures also show that the modified

0
waterline integral Kw* is appreclably smaller than the waterline and hull integrals
Kw and Ks in the usual expression (36a), in accordance with the previous theoretical
considerations. For larger values‘of the Froude number, Figs. 3c-e show that the
bottom-waterline integral Kw' is significant for smaller values of 6 but vanishes

rapidly (exponentially) for increasing values of 6, so that we have K. = Kw* for

0
sufficiently large values of 8.
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The Neumann—Kelvin approximation: first transformation

The linearized Neumann-Kelvin approximation to the far-field wave-amplitude
funtions Kt(t) is given by the sum of the zeroth-order slender-ship approximation
Kot(t) defined by Eqs.(22) or (34) and the correction term K¢i(t) defined by Eq. (23),
where the free-surface integral is neglected as is indicated in Egqs. (27), (28a-c)
and (29). A modified form of Eq. (23) is now obtained. Stokes' theorem (3la), in
which the surface S and the function f are taken as the hull surface h and the
functions exp(Pzz)Ei¢, yields

fw E, ¢ty dg = fh [nz ? exp(Pzz)Ei¢ /3% - n_ 3 exp(Pzz)Et¢ /3z] da , 37)
where we used the identity ty = 0 along the stem line, the keel line and the stern
line which, together with the top waterline w, border the hull surface h. By
substituting Eq. (37) into Eq. (23), and upon using Egs. (24), (19) and (17), we may
obtain

K¢t(t) = fw Et (tx¢t+sx¢s)ty &

+ ivzp fh exp(Pzz)Et [nza¢/Bx-nx8¢/3ztvzpt(unyivnx)¢] da . (38)

Equation (38) can be modified further by using Stokes' theorem (31b), where S
and f are taken as h and exp(Pzz)Et¢, respectively. The contribution of the top
waterline w is null because we have t, = 0 along w. The contribution of the stem
line, the keel line and the stern line, which lie in the ship centerplane y = 0, to
the sum K¢+(t) + K¢—(t) can also be shown to be null. We then have

p? fh exp(Pzz)Et (unyivnx)¢ da = 1 ]h exp(Pzz)Et (nx3¢/3y-nya¢/ax) da . (39)
By substituting Eq. (39) into Eq. (38), and upon using Egqs. (l4a) and (15b), we may
obtain

+ 2 2
1 - : 4
(t) Iw Et (tx¢t+sx¢s)ty de + 1v'p fh exp(P Z)Ft a, da , (40)

e

where the amplitude~functions a_ are defined as

a, = nza¢/8x - nx3¢/3z + iv(nxa¢/3y - ny3¢/ax) . (41)
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Equation (40) may be expressed in the form

K¢ = Kw + 10KH R

where the superscript * was ignored for simplicity, Kw represents the waterline

(42)

integral defined by Eq. (28a), ¢ is given by Eq. (29) and KH is the hull integral in
Eq. (40), that i{s we have

2
Ky = Ih exp(P Z)Et a, da . (43)

Comparison of Eqs. (27) and (42) shows that we have

Ky =K~ = oK (44)

Thus, the waterline integral K

-

W and the hull integral —1cKH' have been combined into

the modified hull integral K, via two applications of Stokes' theorem in the form

H
given by Eqs. (3la,b). The real and imaginary parts of the sum of the port and
starboard contributions to the functions ide', aZKH‘ and ioKH are depicted in
Figs. 4a-e for 0 < tané < 10 (i.e. for 0 < 6 < 84°) and for the simple hull form and
the assumed simple expression for the potential at the hull considered previously in
Fige 2. Figures 4a-e correspond to the following five values of the Froude number
F: 0.1, 0.15, 0.2, 0.25 and 0.3. These figures show that the waterline and hull
integrals ioKw’ and oZKH‘ are considerably larger than the modified hull integral
10KH. Although the latter integral is identical to the sum of the integrals

10Kw' and UZKH' s it clearly is preferable to evaluate icKH directly rather than the

sum of the integrals ide' and ozKH' « The modified expression for the NeumannXKelvin

correction term‘K¢ given by Eqs. (40) and (41) or (42) therefore represents a signi-

ficant improvement in comparison with the usual expression given by Eqs. (23) or (27).

The cancellations between the waterline integral 1oKw' and the hull integral J

2, . ;

o] KH depicted in Figs. 4a-e can easily be explained mathematically for a wall-sided

ship form. For large values of PZ, the ma jor contribution to the hull integral K

-

H

stems from the upper part of the hull surface in the vicinity of the waterline,
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where we have nX = —ty, ny = tx and n, = 0 for a wall-sided ship. More precisely,

Eqs. (28c¢) and (24) yield

- - (o] 2 2
Ky ~ -1 fw E, ¢(uty+vtx) dg Lm exp(Pz) dz as P + = ,

We then have

- - 2
toK "~ u Iw E, ¢(uty+vtx) &t as P* » o | 45)

where Eqs. (29), (l4a) and (15a) were used. By using Eqs. (28b) and (17) we may
then obtain

K, — ik~ v

2
W Et ¢(vtytutx) dg as P° » =, (46)

w

For large values of Pz, the trigonometric functions E_ defined by Eq. (19) are

W’ ’

ioKH' and Kw'-ioKH' defined by Egs. (28b), (45) and (46), respectively, therefore

rapldly oscillatory and the dominant contributions to the waterline integrals K

stem from the point(s), if any, of stationmary phase of the trigonometric functions
E, defined by Eqs. (35a,b,c). At such a point of statiomary phase the terms ty ,
u(utyivtx) and v(vtytutx) in the integrands of the waterline integrals (28b), (45)
and (46) take the values Fu, Fu and 0, respectively, which demonstrates that the
waterline integral Kw' and the hull integral -ioKH' cancel out in a first
approximation in the limit P2 + o for a wall-sided ship.

The real and imaginary parts of the sum of the port and starboard coantributions

to the modified waterline and hull integrals Kw and ioK respectively, and their

H?
sum K¢ are depicted in Figs. 5a-e for the cases considered previously in Figs. 4a-e
and Fig. 2. ItAmay be seen from Figs. 5a-e that the waterline and hull integrals Kw
and 10KH are appreciably larger than their sum K¢, especially for large values of
tan8, Significant cancellations therefore occur between the waterline and hull
integrals in Eq. (40). Further modifications of the expression for the function
K¢ defined by Eq. (40) are then desirable for numerical calculations. These

modifications are now presented.
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The Neumann-Xelvin approximation: second transformation

Let a, B, Y represent three constants and ;x’ ;y’ 32 three unit vectors along the
x~, y-, z—axes, respectively. We have
oe Vx(a2x+33y+yéz)¢ = a(n2¢/22-n,34/2y)
+ 8(n _3¢/3x-n 3¢/32) + Y(nx3¢/8y-ny8¢/8x) . 47)
Equation (47) shows that the amplitude functions a, defined by Eq. (41) may be
expresed in the form

a,

=1 Vx(éyziv22)¢ . (48)

Let the functions exp(Pzz)E where E,_ are the trigonometric functions defined

+

by Eq. (19), be denoted as €,_. We then have

€, = exp[Pz{z—i(uxivy)}] and (49)
2 +> > >
Ve, = -P et(iuextivey-ez) . (50)
We have
> > > > > > > > >
eiVx(aex+Bey+1ez)¢ sz:(aex+ﬂey+yez)¢ - VeiX(aex+Bey+Yez)¢ . (51)
Equation (50) yields
*> > > 2 >
-Vetx(aex+sey+yez)¢ = Pe om, with (52)
> + > - >
m, = (Btivy)ex - (a+iuy)ey + 1(u8+vu)ez . (53)

Equation (53) shows that we have
m, =0 1f a=-iwy and B =Fivwy , (54)
which ylelds
-+ + + > + »>
+ = - + .
ae Bey+‘yez 1y(uex vey+1ez) (55)
This coundition merely expresses that the vector aZx + Bzy + Yzz and the vector Ve_
defined by Eq. (50) are colinear. Equation (51) then becomes
> > > > > +>
+ = +
eth(uex-vey+iez)¢ Vxet(uex_vey+1ez)¢ . (56)
Equations (48) and (56) yield

> +> >
€,a, = e,.n e Vx(eytivez)¢ , (57)
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> > + > > > > >
g,n * Vx(uextvey+iez)¢ =0 e Vxet(uextvey+iez)¢ . (58)
Let the amplitude functions a, be expressed in the form

a, =b +¢, , (59)

+ r %

with b+ defined as

> > > >
bt = e Vx(aex+8ey+yez)¢ , (60)
where a, B, Y are constants. Equations (59), (48), and (60) yield
> > > .\
¢, =-n- Vx[aex+(8—1)ey+(Y+1v)ez]¢ .

Equation (58) now shows that we have

> IR N Pt o
e,c, = -Ptn . Vxei(uexivey+iez)¢ (61)

if the constants a, B, Y are chosen as

@ =ul,, B-= ItvF, , vy = i(Pitv) (62a,b,c)

where ' is some arbitrary constant. Equations (60), (62a,b,c) and (47) then yield

b, = urt(ny3¢/az-nza¢/ay) + (ltvrt)(nza¢/ax-nxa¢/az)
+ i(Fttv)(nx3¢/3y-ny8¢/ax) . (63)
Equations (59) and (61) show that we have
> > > >
€,3, = etbt - Ptn . Vxei(uextvey+iez)¢ . (64)

By using Stokes' theorem (30) we may now obtain
fh €,a, da = fh €,b, da - T, fc st(utxivty+1tz)¢ a , (65)

where the curve c consists of the waterline w plus the bow-keel-stern line, which
lies in the centerplane y = 0. The hull integral in Eq. (40) has thus been
expressed in Eq. (65) as the sum of a hull integral and a waterline integral involv-
ing the‘constants F;, which are arbitrary and can then be selected at will. The
identities (64) and (65) do not involve the term P2¢ appearing in Eqs. (52) and (51).

’ Along the bow-keel-stern line we have y = 0 and ty = 0 and Eq. (49) yields

2
tvt + = + - .
ei(utx vty itz) (utx 1tz) exp[P (z iux)]

Equations (40) and (65) then show that the contribution of the bow-keel-stern line
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¢
F, =3I . (66)

b <

+ -
to the sum K -+-K¢ can be rendered null if the constants P+ are taken as

Equation (65) then becomes

[y €8, da =j eb datT Iy Et(utxivty)¢ dL (67)
since we have t, = 0 and ¢, = E, along the waterline, where z = O,

Equations (19), (14a), (15a) and (1) yield

E, (ut sve )dt = 172 u? dE,
We then have

2 2
+ + = + -
£ Ei(utx_vty)¢ dt = £1F u [(E4), (E:¢)scern]
#F0® [ B, (efot) & . (68)

The bow and stern contributions to the function K + +K, are null because y = 0 and

¢ ¢
E, = E_ at the bow and the stern. Equations (67) and (68) then yield

+
- 2
Ih €,a, da= Ih e b, da ¥ 172 o2r Iw E, (3¢/3t) de . (69)
By substituting Eq. (69) into Eq. (40) we may obtain the following alternative

*
expression for the Neumann-Xelvin correction K to the spectrum function:

]

® F(t) E,[(t ¢ +s ¢ )t turdp/ot] ds

o Ct 4 BlCr o ¥s 0, £ turag t]
2 2 )
+ ivp fh exp(P“z)E, b, da , (70)

where Eqs. (49), (19), (15a) and (1) were used.

By substituting Eq. (66) into Eq. (63) we may obtain

pb, = FA, , (71)
where the amplitude functions A_ are given by

= - + - + -

A, F(nya¢/3z nza¢/ay B(nza¢/8x nx3¢/az) 1C(nx3¢/3y nya¢/ax) (72)
with B and C defined as

B = p(vl-1) and C = p(I-v) .

These relations yield

I *=Cu+v and B=Cv-u, (73a,b)

- .




By using Eqs. (71) , (72) and (73a,b) we may then express Eq. (70) in the form

K;(t) oy Et[(tx¢t+sx¢s)ty t u(Cutv)agp/at] de

+1

ivth exp(Pzz)Ei A, da (74)

where the amplitude functions A, are given by

A

+

(Cu+v)\nyo¢/az—nza¢/3y)

I+

(Cv—u)(nza¢/ax—nx3¢/az) + iC(nxa¢/3y-ny3¢/3x) . (75)
The coanstaant C in Eqs. (74) and (75) is arbitrary and may then be selected at will.
More precisely, C may be chosen as an arbitrary function of t. These equations thus
define a one—parameter fanily of alternative mathematically-equivalent expresions
for the functions K¢i(t).

The amplitude functions in the integrands of the hull integrals in the

alternative expressions (40) and (74) are given by pa, and F#A_, respectively. It

may seem from Eqs. (41), (14b) and (15b) that we have a, = 0(1l) and pa, = 0(t) as

t » », whereas Eqs. (14b), (15a,b) and (75) show that At 0(l1) as t » = for any
finite value of the limit C(») of the arbitrary function C(t). The hull integral in
Eq. (74) therefore vanishes more rapidly than the hull integral in Eq. (40) as t +» =,
This result implies that the waterline integral in Eq. (74) likewise vanishes faster
than the waterline integral in Eq. (40). Indeed, the term txty¢t in the integrand

of the waterline integral in Eq. (40) is replaced by the term (txtytuviCu2)¢t in

Eq. (74). We have txtytuvtCu2 ~ txtyiuv as t + », with an error O(uz) = O(t'z), and

et tuv = 0 at a point of stationary phase of the trigonometric function E_ defined

y
by Eqs. (35a,b,c). The cancellations occurring for large values of t between the
waterline and hull integrals in Eq. (40), as is depicted in Figs. 5a-e, may then be
expected to be significantly reduced in the alternative expression (74).

2 .
For large values of t, Eqs. (l4a,b) show that we have P~ >> 1. The major con-

tribution to the hull integral in Eq. (74) therefore stems from the upper part of
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the hull surface in the vicinity of the waterline. For a wall-sided hull we have
n =~-t ,n =t and n =0 on h in the vicinity of w, and Eq. (75) becomes
X y’ 'y X z

A, = [vtx:uty+c(ucx:vty)]a¢/az - iCa¢/at , (76)
where the idencity tx6¢/bx + ty3¢/3y = 3¢/t was used. The hull integral in Eq. (74)
can be approximated by a waterline integral for P2 >> 1, Specifically, we have

#1v?[  exp(P?2)E, A, da ~ [, E, Aht a an

h
+ +
where Ah- is given by Ah_ = ?iuzA;. Equation (76) then yields
+
A" = 7iu’[ve Fur +CCat tve )]3¢/oz 7 Cu®dg/ot . (78)
Xy Xy
We may choose s, = 0. We then have ¢t= 3¢/3t for a wall sided hull and the amplitude
+

function, Aw' say, in the integrand of the waterline integral in Eq. (74) becomes

A% = (t.t tuvtcu?)as/3 (79)

- txty-u =Cu ¢/at .

The ma jor contributions to the waterline integrals in Eqs. (74) and (77) stem
from the point(s) of stationary phase of the trigonometric functions E, and from the

end points, that is the bow and the stern. At a point of stationary phase, Eqs.

(35a,b,c) hold and Eqs. (78) and (79) become

Ahi = 7 1u23¢/0z 7 Culae/at , (80a)
+ 2
Aw =% Cu 3¢/t , (80b)

where Eq. (17) was used. These equations show that the sum of the waterline and hull
amplitude functions at a point of stationary phase is independent of the constant C,
as must be true in general (i.e. for all values of t, including the limit t + =

considered here), and is given by

An

which stems from the hull integral in Eq. (74).

+
+A, = 11u23¢/az . (81)

+
Equations (78) and (80a) show that the amplitude function Ah' is O(uz) at the
bow and the stern and at a point of stationary phase. The dominant contribution to

the hull integral in Eqs. (74) and (77) therefore stems from the point(s) of
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stationary phase and is O(Fu3). Equation (80b) shows that the stationary-phase
contribution to the waterline integral in Eq. (74) likewise is O(Fua). The bow and
stern contributions to the waterline integral in Eq. (74) stem from the term

txty8¢/8t (82)
in Eq. (79), which is 0(1). The bow and stern contributions to the waterline inte-
gral in Eq. (74) therefore are O(quz) and dominate the 0(Fu3) stationary-phase
contributions to the waterl’ine and hull integrals in the limit t + =, The waterline
integral in Eq. (74) thus dominates the hull integral in this limit.

However, an exception to this general rule occurs if the awplitude function
defined by Eq. (82) is null at the bow and the stern. Such would be the case for
cusped ends, for which we have ty = 0., A more realistic case is that of a round-
ended ship form, e.g. an oil tanker, for which we have tx = 0 and 34/3t = 0 at the
bow and the stern. For such hull forms, the dominant contributions to the waterline
and hull integrals in Eq. (74) stem from the point(s) of stationary phase and are
O(Fua), as follows from Eqs. (80a,b). These equations show that significant cancel-
lations might then occur between the waterline and hull integrals in Eq. (74) unless
the function C(t) vanishes in the limit t » «, Accordingly, we impose that the
arbitrary function C(t) in Eqs. (74) and (75) satisfy the condition

C+0 as t*»o, (83)

An obvious choice for the function C(t) satisfying Eq. (83) is

c=0. (84)
The corresponding expressions for the functions K¢i are readily obtained from Egs.
(74) and (75). These equations may be expressed in the form

K¢ =Kw1; +KH)‘ , (85)

where the superscript t was ignored for simplicity and the functions Kw" and KH"

correspond to the waterline and hull integrals in Eq. (74), respectively. The real
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and imaginary parts of the sum of the port and starboard contributions to the func-

tions K, and 10K, defined by Egs. (40)-(43) and the functions Kw" and KH" defined

by Eqs. (74), (75) and (84), (85) are depicted in Figs. 6a-e for 0 < tang < 10 (i.e.
for 0 < & < 84°) an? f~r the cases considered previously in Figs. 2, 4a-e and Sa-e.

It may be seen from Figs. 6a—-e that the functions K and KH" vanish more rapidly

W

than the functions Kw and icKH for increasing values of t = tanB, in accordance with

the foregoing theoretical considerations. The cancellations occurring between the

waterline and hull integrals K . and 10KH for large values of tanf thus are signifi-

W

cantly reduced in the alternative expression X

L , P,

+ K

W H , which 1s therefore

preferable to the expression X + ioKH for large values of tanf. However, the

W

functions Kw" and Ku" are appreciably larger than the functions Ky and ik for
small values tanf, especially in Figs. 5a,b,c corresponding to small values of the
Froude number, and significant cancellations thus occur between the waterline and

hull integrals X

w and KH" for small values of tanf. The expression X, +

oK, therefore is preferable to the expression Kw" + KH" for small values of tar@,
whereas the reverse holds for large values of tan§.

The amplitude functions in the Integrands of the waterline integrals in Egs.
(40) and (74) are nearly identical for small values of t if we have

v+ Cu<K1l as t+ 0., (86)
Equations (41) and (75) show that the amplitude functions a, and ¥uA, in the
integrands of the hull integrals in Eqs. (40) and (74) likewise are nearly identical
as t » 0 if condition (86) and the condition l=uu-Cv) << 1 hold. By using Eq. (17),
we may express the latter condition in the form v(vtCu) << 1, which is identical to
condition (86). This condition therefore ensures that the waterline and hull

integrals in Eq. (74) are nearly identical to the corresponding integrals in Eq. (40)

in the limit t » O.
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The large- and small-t conditions (83) and (86) are satisfied if the arbitrary
function C(t) is selected in the form

C = —Auv ., (87)
Condition (86) ther hecomes v(l—xuz) <1 as t » 0. Equation (17) shows that we
have v(l-xuz) ~ v ast >0 if

A+l as t+0. (88)

By substituting Eq. (87) into Eqs. (74) and (75) we may obtain
exp(Pzz)Ei A, da , (89)

, - 2
K¢ (t) = jw E, a, & F iv fh

where the amplitude functions a and A, are given by

ay

2
(tx¢t+sx¢3)ty * uv(l-Au )a¢/ot, (302)

A

+

v(1—xu2)(nya¢/az-nza¢/ay)

+l

u(1+Xv2)(nza¢/3x-nxa¢/az)

ikuv(nx8¢/8y—nya¢/3x) . (90b)
An obvious choice for the function A(t) satisfying condition (88) is
A=1. (91)
The corresponding expressions for the functions Kq)t are readily obtained from

v2 by virtue of Eq. (17). These equa-

Eqs. (89) and (90a,b), where we have 1-u?
tions may be expressed in the form

aw * *
K¢ K, TRy, (92)

where the superscript * was lgnored for simplicity and the functions Kw* and KH*

correspond to the waterline and hull integrals in Eqs. (89), respectively. The real
and imaginary parts of the sum of the port and starboard contributions to the func-—
tions Kw and ioKH defined by Eqs. (40)-(43) and the functions K
Eqs. (89)~-(92) are depicted in Figs. 7a-e for the cases considered previously in

* * .
W and KH defined by

Figs. 2, 4a-e, 5a-e and 6a—-e. 1t may be seen from Figs. 7a—e that the functions

Kw* and KH* vanish more rapidly than the functions Kw and 10KH for increasing values
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of t = tanf. In this respect, the functions Kw* and KH* are comparable to the func-

tions K.°“ and KH" depicted in Figs. 6a-e. However, the functions K

* *
W and KH

W

e

depicted in Figs. 7a-e and the functions Kw" and KH’ depicted in Figs. 6a-e are

significantly different for small and moderate values of tanf8. More precisely, the

functions Kw" and KH" are appreciably larger than the functions K and 1K  , as

was already noted, whereas the functions Kw* and KH* are comparable to the functions

Kw and 10KH « In fact, the functions Kw* and KH* are somewhat smaller than the

functions Kw and ioKH for small and moderate values of tan®.

Figures S5a-e and 7a-e show that the cancellations occurring between the

waterline and hull integrals Kw and 10K, are reduced significantly in the modified

H
waterline and hull integrals Kw* and KH*. The expression for the Neumann-Kelvin
correction term K¢+ +-K¢' defined by Eqs. (89)-(91) therefore is preferable to the
expression given by Eqs. (40) and (41) for numerical calculations.

The velocity components 3¢/3x, 3¢/dy and 3¢/3z in Eq. (90b) defining the ampli-
tude functions A, in the hull integral in Eq. (89) can be expressed in terms of the
components ¢t and ¢s of the veloclity vector V¢ along two unit vectors

t= (tx, ty’ tz) and & = (Sx’ Sy’ sz) (93a,b)
tangent to the hull surface. More precisely, we have V¢ = (3¢/3n);+¢t:+¢s; , which

yields
3¢/9x = nx3¢/3n ted, ts o, (94a)
3¢/3y = ny3¢/8n + ty¢t + Sy¢s , (94b)
39¢/3z = n23¢/3n tee, v, (94¢)

where 3¢/9n is the velocity component along the unit outward normal vector 1 to the
hull surface defined as
A= @ xs)|txs]|. (95)

The unit vectors E and ; to the ship hull are tangent to curves which approximately
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correspond to waterlines and framelines, respectively, and they point towards the
bow and the keel, respectively. The vectors t and § thus are roughly (but not
necessarily exactly) orthogonal. At the mean free surface, the vector t is tangent
to the top waterline (and we thus have tz = 0) in agreement with our previous

definitioan. Equations (94a-c) yield

ny3¢/az-n28¢/ay = (nytz-nzty)¢t + (nysz—nzsy)¢S , (96a)
nza¢/8x-nxa¢/az = (nztx—nxtz)¢t + (nzsx—nxsz)¢S , (96b)
nx8¢/ay-nya¢/ax = (nxty_nytx)¢t + (nxsy—nysx)¢s . (96¢)

By using Eqs. (96a-c) we may then express the function A defined as
A= a(ny8¢/az—nza¢/3y) + B(nza¢/3x-nxa¢/az) + Y(nxa¢/ay-nya¢/ax) 97)

in the form

A=Te +Sp_, (98)

where T and S are given by

> > > > >
T (aex+8ey+yez) + nxt , (99a)
+
s

S

(a3x+s‘éy+y‘éz) . XS . (99b)
By substituting Eq. (95) into Egs. (99%a,b) we may then express Eq. (98) in the form
A= (T¢, -5 )] txs]|, (100)

where T and $° are given by

> >
‘= + - . 01
T as_ E&syﬂsZ (atx+ﬂty+ytz)t s , (101a)
> >
‘o= + - *S 101b
S at Bty+ytz (asx+Bsy+Ysz)t s ( )

Equations (97), (100), and (10la,b) finally yield
a(ny3¢/8z-nza¢/3y) + s(nza¢/3x—nx3¢/az) + y(nxa¢/ay-ny3¢/ax) =
>
[(asx+Bsy+Ysz)8¢/8t - (acx+scy+ytz)a$73s]/| txs]|, (102)
where the relations
> + + >
3p/at = ¢, ¥ tes ¢ and 3¢/3s = oyt tes o (103a,b)

were used. Equations (90a,b), (102) and (103a,b) show that the Neumann—<elvin
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+
correction K¢" defined by Eq. (89) may be expressed in terms of the components

¢t and ¢s of V¢ along two unit vectors t and 8 tangent to the hull,
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CONCLUSION
In summary, the wave potential ¢w(§) at a point E = (£, n, ¢ £ 0) behind the
stern of a ship is defined by Eq. (20), that {s we have

¢w(g) = (2/n) fz exp(vchz) cos(vznpt) Im exp(ivzgp) [K+(t) +K ()] de , (104)

whera v and p are defined by Eqs. (1) and (l4b), respectively, and the wave-spectrum
fanctions K (t) are expressed in the form of Rq. (21), as follows:
t r
R = i + K " .
R, (e) =K, (o) P¢ (t) (105)
In this expression, Ko; represent the zeroth-order slender-ship approximation and
+

\¢_ the Neumann-Xelvin correction to the slender—ship approximation,

The slender-ship approximation X _ =

g 1is given by Eq. (22) or by the recommended

nodified Eq. (34). We then have

]

.t oo 2_2 2 2
Ky (8) fw nt(nx u )ty d, + u fw' exp(P z)E, ty ds
- v / exp(P2)E, n_ da + v° / exp(Pzz)E n_ da (106)
s t 'z b * x >

where w  represents a waterline-like curve separating the hull side s and the hull
bottom bs  Tn Eq. (105), E_ are the trigonometric functions defined by Eq. (19),
that is

Et(x’y;t) k) exp[-ipz(ux + Vy)] N (107)
wherz P, u and v arz given by Eqs. (l4a,b) and (15a,b).

+

The Neumann-Xelvin correction terms K¢‘ are defined by Eqs. (23) and (24). This
well-known expression was modified into the form givan by Eqs. (40) and (41) via a
fiest mathematical transfoemation. A second mathematical transformation led to the

alternative expression given by Eqs. (74) and (75), which involve the arbitrary

function C(t). Mathematical a.d numerical conslderations led to the selection

t
C(t) = -uv and to the recommended expression for the Neumann-Xelvin correction X
given by Eqs. (89), (90a,b) and (91). We then have
t 2 2 .
z¢ = jw E, a, db ¢ v fh exp(P 2)E, A, da , (1n8)
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3
= + +
a, (tx¢t sx¢s)ty uv'3g/at , (109a)
> > 3 _ 2
|t xs|a =[v £ Fu(l+v )ty iuvtz] 3¢/3s
- [vas $u(1+v2)s -iuvs ] 3/at (109b)
X y z

where Eqs. (17) and (102) were used. In Eq. (109b), t and § are unit vectors
tangent to the hull surface along curves which approximately correspond to waterlines
and framelines, respectively. The vectors t and s point towards the bow and the
keel line, respectively. They are roughly (but not necessarily exactly) orthogonal.
At the mean free surface, the vector E is tangent to the top waterline (and we thus
have tz=0). The components ¢s and ¢t of V¢ along the unit tangent vectors s and t

V¢-E are related as follows

1]

and the velocities 9¢/ds = V¢-; and 3¢/3t

9¢p/3s = ¢s+e¢t and 9¢/3t = ¢t+s¢s R (110a,b)

b, = (2¢/3s-23¢/0t)/(1€?) and ¢ _= (3¢/3t-€34/35)/(1-¢7) (111a,b)
where ¢ is defined as

€ = tes . (112)

The free-surface integral in Eq. (23) associated with the nonlinear terms in the
free-surface boundary condition has been ignored in Eq. (108), which thus corresponds
to the usual linearized Neumann—Xelvin approximation. The generalized Neumann-Xelvin
expression incorporating the free-surface nonlinear term w(¢) defined by Eq. (5) is
then given by

K¢t(t) + ffg E, m($) dxdy . (113)

+
The usual expression for the functions K,~ defined by Eqs. (23) and (24) involves

¢
both the velocity potential ¢ and the velocity vector V¢. The alternative

+
mathematically-equivalent expressions for the functions K¢" given by Egs. (40) and
(41), Eqs. (74) and (75), and Eqs. (89) and (90a,b) only involve the velocity vector

V4, not the potential ¢. More precisely, these alternative modified expressions are

defined in terms of the velocity components ¢t and ¢s along the vectors t and s
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tangent to the hull, as may be seen from Eq. (102) and is indicated explicitly in
Eqs. (109a,b). The alternative modified expressions obtained in this study
therefore define the wave potential behind the stern of a ship in terms of the speed
and the size of the ship, the form of its hull and the tangential velocity at the
mean hull surface. These expressions are directly suitable for use in conjunction
with a boundary-integral equation method based on a source distribution, or any
other numerical method in which the velocity vector (but not the potential) is
determined on the mean hull surface.

However, the main recommendation of the alternative modified expressions for the
functions K¢i obtained in this study resides in the fact that the cancellations
occurring between the waterline and hull integrals in the usual expression (23) are
considerably reduced in the modified expressions, especially the recommended expres—

sion defined by Eqs. (108) and (109a,b). The sum of the port and starbca=d contribu-

+ -
tions to the function K¢ =R + K, may be expressed in the alternative forms

¢ ¢

N 521(“', (114a)

- * *
1<¢ =K, tK.T, . (114b)

corresponding to the usual expression (23) and the recommended modified expression
(108), respectively. The waterline Integrals Kw and ioKw' and the hull integral

oZKH' in Eq. (l14a) are defined by Eqs. (28a-c) and (29), and the terms Kw* and KH*

correspond to the waterline and hull integrals in the modified expression (108).

*

H and

The real and imaginary parts of the functions K., ioKw' s oZKH', Kw* , K

K¢ are depicted in Figs. 8a-e for the simple cases considered previously in Figs. 2,
4a-e, 5a-e, 6a-e and 7a-e. The function K¢ is appreciably smaller and vanishes much
more rapidly with increasing values of tanf than its components oZKH', ioKw' and X .

Large cancellations therefore occur among these components and the usual expression

{23) is quite i1l suited for accuraie numerical calculations, notably for evaluating
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the short divergent waves in the wave spectrum corresponding to large values of

tanf. It may be seen from Figs. 8a-e that the modified waterline and hvll! integrals

K * and KH* in expression (108) are appreciably smaller and vanish much faster than

W
the functions K

»

W icKw

modified expression (108) thus is considerably better suited than the well-known

and ozKH' and are comparable to the function K¢. The

usual expression (23) for accurate numerical calculations of the steady wave spectrum
of a ship.

For large values of t = tanf, the major contribution to the hull integral KH*
stems from the upper part of the hull surface in the vicinity of the mean waterline
due to the exponential function exp(Pzz). The hull integral KH* , and consequently
the function K¢ , may then be approximated by a waterline integral for large values
of tan6, as has indeed been shown previously in this study for the special case of a
wall-sided hull., This asymptotic approximation can be extended to arbitrary ship
forms, i.e. ships having flare, ard refined by retaining the first few terms in the
asymptotic approximation. A detailed short-wave asymptotic analysis will be

reported elsewhere as it 1is important for evaluating the short divergent waves of

interest for applications to remote-sensing of ship wakes.
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